O5 (program reference number) Polarization- and time-resolved DFWM spectroscopy for studies of transient anisotropy of molecular motion

P. Maksyutenko¹, P. Radi¹, **Dimitrii N. Kozlov²**, A.P. Kouzov³ ¹Paul Scherrer Institute, Switzerland ²A.M. Prokhorov General Physics Institute, Russia ³Saint-Petersburg State University, Russia

Photo-dissociation of H_2O_2 molecules by linearly polarized nspulse radiation at 266 nm results in transient anisotropies of nascent OH fragments recoil velocity (**v**) and angular momentum (*J*) vector distributions. These anisotropies have been probed at arbitrary time delays after the H_2O_2 photo-dissociation pulse using degenerate four-wave mixing (DFWM) with appropriately adjusted polarizations of pulsed input and signal beams. DFWM lineshapes of rovibronic transitions in the $A^2\Sigma^+ \leftarrow X^2\Pi$ (0,0) band of nascent OH have been recorded.

The polarization-resolved DFWM spectra show clear evidence of vector correlations between the parent H_2O_2 molecule transition dipole moment, the OH fragments recoil velocity and angular momentum. The variations of DFWM line shapes and intensities with the time delay characterize collisional disturbance of *J*-*v* correlation and relaxation of rotational and translational anisotropies.

This space will be reserved for notes and will take up the lowest part of the page.