P e r t u r

> P. Bornhauser, Y. Sych, G. Knopp, T. Gerber, **Peter P. Radi** General Energy, Paul Scherrer Institute, Villigen, Switzerland

In this work, we take into account our recent studies on C₃ where we used perturbation-facilitated two-color resonant four-wave mixing spectroscopy to access the (dark) triplet manifold from the singlet ground state *via* "gate-way" levels (i.e. singlet-triplet mixed levels) [1] and the deperturbation investigation of the d³Πg, v= 6 level of the Swan band that unveiled the presence of the lowest quintet state (${}^{5}\Pi_{g}$) of C₂[2].

We report on perturbation-facilitated optical-optical doubleresonance experiments to access the first excited quintet state of C_2 via "gate-way states" in the perturbed d ${}^3\Pi g$, v= 6. The newly found ${}^5\Pi_u$ state is characterized at rotational resolution by performing a least-squares fit of the observed transitions to a ${}^5\Pi_u - {}^5\Pi_g$ Hamiltonian. The work represents a rare case of a successful analysis of a quintet manifold of a molecule exhibiting a singlet ground state (${}^1\Sigma_g^+$).

[1] Y. Sych, P. Bornhauser, G. Knopp, Y. Liu, T. Gerber, R. Marquardt, and P.P. Radi, J. Chem. Phys. 139, 154203 (2013)

[2] P. Bornhauser, Y. Sych, G. Knopp, T. Gerber, and P.P. Radi, J. Chem. Phys. 134, 044302 (2011)

This space will be reserved for notes and will take up the lowest part of the page.